Publications 2011-..

[55] D. Dutykh, C. Acary-Robert, D. Bresch. Mathematical modeling of powder-snow avalanche flows. Studies Applied Maths, 1–29, (2011).

[56] D. Bresch, M. Renardy. Well-posedness of two layer shallow water flow between two horizontal rigid plates. Nonlinearity 24, 1081–1088, (2011).

[57] D. Bresch, X. Huang. A Multi-Fluid Compressible System as the Limit of Weak-Solutions of the Isentropic Compressible Navier-Stokes Equations. Arch. Rational Mech. Analysis 201 (2), 647–680, (2011).

[68] D. Bresch, P. Noble. Mathematical derivation of viscous shallow water equations with zero surface tension. Indiana Univ. Journal, vol. 60, Number 4, 1137–1269 (2011).

[59] D. Bresch, B. Desjardins, E. Grenier. Singular ordinary differential equations homogeneous of degree 0 near a codimension 2 set. Proc. Amer. Math. Soc. 140, 1697–1704, (2012).

[60] D. Bresch, X. Huang, J. Li. A global weak solution to a one dimensional non-conservative viscous two-phase system. Comm. Math. Phys., Volume 309, Issue 3, 737–755, (2012).

[61] D. Bresch, M. Renardy. Kelvin-Helmholtz instability with a free surface. ZAMP. Volume 64, Issue 4, 905–915, (2013).

[62] R.H. Khonsari, J. Olivier J, P. Vigneaux, S. Sanchez, P. Tafforeau, P.E. Ahlberg, F. Di Rocco F, D. Bresch, A. Ohazama, P.T. Sharpe, V. Calvez. A mathematical model for mechano-transduction at the early steps of suture formation. Proceedings of the Royal Society of London. Series B. (2013), 280 (1759).

[63] D. Bresch, G. Narbona-Reina. Two Shallow-Water Type Models for Viscoelastic Flows from Kinetic Theory for Polymers Solutions. ESAIM: M2AN 47, 06, 1627–1655, (2013).

[64] A. Abbaszadeh, D. Bresch, B. Desjardins, E. Grenier. Asymptotic Production Behavior in Waterflooded Oil Reservoirs: Decline Curves on a Simplified Model. European J. Fluid Mech Math 43, 131–134, (2014).

[65] D. Bresch, C. Prange. Newtonian limit for weakly viscoelastic fluid flows. SIAM J. Math. Anal., 46, no. 2, 1116–1159 (2014).

[66] D. Bresch, C. Perrin, E. Zatorska. Singular limit of Navier Stokes system leading to a free/congested zones two-phase model. C.R. Acad. Sciences, Mathématiques Series I – Mathematics, 352: 685-690 (2014).

[67] D. Bresch, M. Hillairet. Note on the derivation of multicomponent flow systems. Proc. AMS, 143, 3429–2443, (2015).

[68] D. Bresch, V. Giovangigli, E. Zatorska Two velocity hydrodynamics in Fluid Mechanics, Part I: Well Posedness for Zero Mach Number Systems. J. Math. Pures Appl. Volume 104, Issue 4, 762–800 (2015).

[69] D. Bresch, B. Desjardins, E. Zatorska Two velocity hydrodynamics in Fluid Mechanics, Part II. Existence of global κ entropy solutions to compressible Navier Stokes system with degenerate viscosities. J. Math. Pures Appl. Volume 104, Issue 4, 801–836 (2015).

[70] D. Bresch, F. Couderc, P. Noble, J.–P. Vila A generalization of the quantum Bohm identity: Hyperbolic CFL condition for Euler–Korteweg equations. C.R. Acad. Sciences Paris Volume 354, Issue 1, 39–43, (2016).

[71] D. Bresch, P. Noble, J.–P. Vila Relative Entropy for Compressible Navier-Stokes Equations with Density Dependent Viscosities and Appli- cations. C.R. Acad. Sciences Paris Volume 354, Issue 1, 45–49 (2016).

[72] D. Bresch, P.–E. Jabin. Global weak solutions of PDEs for compressible media: A compactness criterion to cover new physical situations. Springer INdAM-series, special issue dedicated to G. sc Métivier, Eds F. Colombini, D. Del Santo, D. Lannes, 33–54, (2017).

[73] D. Bresch, M. Renardy. Development of Congestion in Compressible Flow with Singular Pressure Asymptotic Analysis 103, 95–101, (2017).

[74] P. Sollich, J. Olivier, D. Bresch. Aging and linear response in the Hébraud-Lequeux model for amorphous rheology. Phys Rev A, 50(16) (2017).

[75] D. Bresch, P. Noble, J.–P. Vila. Relative entropy for compressible Navier-Stokes equations with density dependent viscosities and applications. ESAIM Proc and surveys, vol. 58, 40-57 (2017).

[76] D. Bresch, P.–E. Jabin. Global Existence of Weak Soutions for Com- presssible Navier-Stokes Equations: Thermodynamical unstable pressure and anisotropy viscous stress tensor. Annals of Maths, 577–684, 188, (2018).

[77] D. Bresch, P.–E. Jabin. Quantitative regularity estimates for advective equation with anelastic degenerate constraint. Proceedings of the International Congress of Mathematicians (ICM  2018), pp. 2167–2192 (2019). This is an original article which has not been published elsewhere.

[78] D. Bresch, M. Colin, K. Msheik, P. Noble, X. Song. BD En- tropy and Bernis-Friedman Entropy C.R. Acad Sciences Paris, Mathématiques volume 357, Issue 1, 1-6 (2019).

[79] D. Bresch, M. Hillairet. A compressible multifluid system with new physical relaxation terms. Annales ENS volume 52, 255–295 (2019).

[80] D. Bresch, P.B. Mucha, E. Zatorska. Finite-Energy solutions for compressible two fluids Stokes system. Arch. Rational Mech. Anal. Volume 232, Issue 2, 987–1029, (2019).

[81] D. Bresch, M. Gisclon, I. Lacroix-Violet. On Navier-Stokes- Korteweg and Euler-Korteweg systems: Application to quantum fluids mod- els. Arch. Rational Mech. Anal. volume 233, Issue 3, 975–1025, (2019).

[82] D. Bresch, S. Necasova, C. Perrin. Compression Effects in Heterogeneous Media. Journal de l’Ecole Polytechnique Mathématiques Tome 6, 433–467, (2019).

[83]   D. Bresch, P.–E. Jabin, Z. Wang. On Mean Field Limit and Quantitative Estimates with a Large Class of Singular Kernels: Application to the Patlak-Keller-Segel Model C.R. Acad. Sciences Paris, Section Mathématiques, Volume 357, Issue 9, 708-720, (2019). Cette note aux CRAS est mentionnée car actuellement le papier [93] concernant la partie attractive est en cours de soumission. Si ce dernier papier est accepté, [83] fera parti intégrante de [84] et [93] et donc sera enlevé de la liste.

[84] D. Bresch, P.–E. Jabin, Z. Wang. Modulated Free Energy and Mean Field Limit. Séminaire Laurent Schwartz, EDP et Applications, année 2019-2020. Exposé no II, 22 p.   This is an original article which has not been published elsewhere. This article concerning repulsive kernels has to be coupled with the submitted paper [93] concerning attractive kernels to cover all the announced results in the note aux CRAS [83].

[85] D. Bresch, G. Métivier, D. Lannes. Waves interacting with a partially immersed obstacle in the Boussinesq regime. Analysis PDE , Issue 14, 1085–1124 (2021).

[86] D. Bresch, C. Burtea. Global Existence of Weak Solutions for the Anisotropic Compressible Stokes System. Annales Institut Henri Poincaré C, Analyse non linéaire, 37, 6, 1271–1297 (2020). Paper dedicated to the memory of Geneviève Raugel.

[87] D. Bresch, C. Burtea. Weak solutions for the stationary anisotropic and nonlocal compressible Navier-Stokes system.  J. Math Pures Appl., 146, 183–217 (2021).

[88] D. Bresch, N. Cellier, F. Couderc, M. Gisclon, P. Noble, G.–L. Richard, C. Ruyer-Quil, J.–P. Vila. Augmented Skew-Symetric System for Shallow-Water System with Surface Tension Allowing Large Gradient of Density. J. Comp. Phys, 419, 109670 (2020).

[89] D. Bresch, A. Vasseur, C. Yu. Global Existence of Entropy-Weak Solutions to the Compressible Navier-Stokes Equations with Non-Linear Density Dependent Viscosities.  J. Eur. Math. Soc. 24(5):1791–1837, (2022).

[90] D. Bresch, P.–E. Jabin, F. Wang. The global existence of weak solutions for compressible Navier-Stokes equations with locally Lipschitz pressure depending on time and space variable. Nonlinearity  34(6), 4115-4162 (2021).

[91] D. Bresch, M. Gisclon, I. Lacroix-Violet, A. Vasseur. On the Exponential decay for Compressible Navier-Stokes-Korteweg equations with a Drag Term. J. Math Fluid Mech 21(11) (2022). Note that this paper was submitted in april 2020 before D. Bresch starts to be part of  the editorial board.

[92] D. Bresch, C. Burtea. Extension of the Hoff solutions framework to cover compressible Navier-Stokes equations with possible anisotropic viscous tensor. Accepted in Indiana Univ. Journal (2022).

[93] D. Bresch, P.–E. Jabin, Z. Wang. Mean field limit and quantitative estimates with singular attractive kernels. Accepted in Duke Math. Journal (2022).

%d blogueurs aiment cette page :