Publications

Articles:

[1] D. Bresch, On bounds of the drag for a Stokes flow around a body without thickness. Comm. Math. Univ. Carolinae, 38, 4, (1997), 665–679

[2] D. Bresch, J. Simon. Sur les variations normales d’un domaine. ESAIM: Control Optimiz. Calc. Var., 38, (1998), 251–261.

[3] D. Bresch, J. Lemoine, Stationary solutions for second–grade fluids equations. Math. Models Methods Appl. Sci., 8, 5, (1998), 737–748.

[4] D. Bresch, J. Lemoine. On the existence of solutions for non stationary third–grade fluids. Int. J. Nonlinear Mech., 34, 3, (1999), 485–498. Extension de : D. Bresch, J. Lemoine, Sur l’existence et l’unicité de solution des fluides de grade 2 ou 3. C. R. Acad. Sci. Paris, 324, série I, (1997), 605–610.

[4] D. Bresch, J. Lemoine, J. Simon. A vertical diffusion model for lakes. S.I.A.M. J. Math. Anal., 30, 3, (1999), 603–622. Extension de : D. Bresch, J. Lemoine, J. Simon, Ecoulement engendr ́e par le vent et la force de Coriolis dans un domaine mince. — I. Cas station- naire. C. R. Acad. Sci. Paris, 325, s ́erie I, (1997), 807–812.

[5] Y. Amirat, D. Bresch, J. Lemoine, J. Simon. Existence of semi-periodic solutions of steady Navier–Stokes equations in a half space with an exponential decay at infinity. Rend. Sem. Mat. Univ. Padova, 102, (1999), 341–365.

[6] D. Bresch, J. Lemoine, J. Simon. Nonstationary models for shallow lakes. Asymptotic Analysis, 22, (2000), 15–38. Extension de D. Bresch, J. Lemoine, J. Simon. Ecoulement engendré par le vent et la force de Coriolis dans un domaine mince — II. Cas ́evolution. C. R. Acad. Sci. Paris, 327, s ́erie I, (1998), 329–334.

[7] D. Bresch, J. Simon. On wind driven geophysical flows without bottom friction, Ann. Univ. Ferrara, Sez. VII, Sc. Mat., vol XLVI, (2000), 101– 113.

[8] D. Bresch, J. Lemoine, J. Simon. A geostrophic model with vertical diffusion. Nonlinear Analysis, Theory, Methods and Applications, 43/4, (2001), 449–470.

[9] D. Bresch, J. Simon. On the effect of friction on wind driven shallow lakes, J. Math. Fluid Mech. (2001), 231–258.

[10] Y. Amirat, D. Bresch, J. Lemoine, J. Simon. Effect of rugosity on a flow governed by Navier–Stokes equations. Quarterly Appl. Math, 59, no. 4, (2001), 769–785.

[11] D. Bresch, B. Desjardins, E. Grenier, C.K. Lin. Low Mach Number Limit of Viscous Polytropic Flows: Formal Asymptotics in the Pe- riodic Case, Studies Applied Math., 109, (2002), 125–148.

[12] D. Bresch, T. Colin. Some remarks on the derivation of the Sverdrup relation, J. Math. Fluid Mech. 4, 2, (2002), 95–108.

[13] D. Bresch, T. Huck, M. Sy. Circulation thermohaline et équations planétaires géostrophiques: propriétés physiques, numériques et mathématiques, Ann. Math. Blaise Pascal, 9, No2, (2002), 181–212.

[14] D. Bresch, F. Guillen-Gonzalez, N. Masmoudi, M.A. Rodriguez- Bellido. On the uniqueness of weak solutions of the two-dimensional prim- itive equations, Diff. and Int. Eqs, 16, Number 1, (2003), 77–94.

[15] D. Bresch, F. Guillen-Gonzalez, N. Masmoudi, M.A. Rodriguez- Bellido. Asymptotic derivation of a Navier condition for the Primitive equations, Asymptotic Analysis, 33, (2003), 237–259.

[16] D. Bresch, J. Simon. Western boundary currents versus vanishing depth, Discrete and continuous dynamical systems-Series B, 3, (2003), 469– 477.

[17] D. Bresch, M. Sy. Porous convection in rotating thin domains: the planetary geostrophic equations, used in geophysical fluid dynamics, revis- ited, Cont. Mech. Thermodyn. 15 (2003) 3, 247–263.

[18] D. Bresch, B. Desjardins, C.K. Lin. On some compressible fluid models: Korteweg, lubrication and shallow water systems, Comm. Part. Diff. Eqs. 28, 3–4, (2003), 1009–1037.

[19] D. Bresch, B. Desjardins. Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Commun. Math. Phys. 238 (2003) 1-2, 211–223. Extension de : D. Bresch, B. Desjardins. Sur un modèle de Saint-Venant visqueux et sa limite quasi-géostrophique, C. R. Acad. Sci. Paris, 335, S ́erie I, (2002), 1079–1084.

[20] D. Bresch. A direct asymptotic analysis on a nonlinear model with thin layers, Ann. Univ. Ferrara, Sez VII, Sc. Mat., vol. II, (2003), 359–373.

[21] D. Bresch, F. Guillén-Gonzalez, M.A. Rodriguez-Bellido. A corrector for the Sverdrup solution for a domain with islands, Applicable Anal. 83 (2004), 3, 217–230.

[22] D. Bresch, B. Desjardins, D. Gérard-Varet. Rotating fluids in a cylinder, numéro spécial ”Some Evolution Equations and their Qualitative Properties”, Série DCDS Série A, Vol. 11, Number 1, 47–82, (2004).

[23] D. Bresch, J. Lemoine, F. Guillen-Gonzalez. A note on a degenerate elliptic equation with applications for seas and lakes, Elect. J. Diff. Eqs, 42, 1–13, (2004).

[24] D. Bresch, J. Koko. An optimization–based domain decomposition method for nonlinearly wall laws in coupled systems, Math. Models. Methods Appl. Sci., vol. 14, 7, 1085–1101, (2004).

[25] D. Bresch, B. Desjardins. Quelques mod`eles diffusifs capillaires de type Korteweg, C. R. Acad. Sci. Paris, section m ́ecanique, 332, no. 11, 881–886, (2004).

[26] D. Bresch, A. Kazhikhov, J. Lemoine. On the two-dimensional hydrostatic Navier-Stokes equations, SIAM J. Math. Anal., 36, 3, 796–814, (2004).

[27] D. Bresch, B. Desjardins, B. Ducomet. Quasi-neutral limit for a viscous capillary model of plasma, Annales I.H.P., 22, 1, 1–9, (2005).

[28] D. Bresch, D. Gérard-Varet. About roughness-induced effects on the quasi-geostrophic model, Commun. Math. Phys., 253, 1, 81–119, (2005).

[29] D. Bresch, M. Gisclon, C.K. Lin An example of Low mach (Froude) number effects for compressible flows with nonconstant density (height) limit, M2AN, 39, 3, 477–486, (2005).

[30] D. Bresch, G. Métivier. Global existence and uniqueness for the lake equations with vanishing topography: elliptic estimates for degenerate equations, Nonlinearity, 19, no. 3, 591–610 (2006).

[31] D. Bresch, D. Gérard-Varet, E. Grenier. On the derivation of the planetary geostrophic equations, Arch. Rat. Mech. Anal., 182, 3, 387–413 (2006).

[32] D. Bresch, D. Gérard-Varet. On some homogeneization problems from shallow water theory. Applied Math. Letters, 20, Issue 5, 505–510, (2006).

[33] D. Bresch, B. Desjardins. On the construction of approximate solutions for the 2D viscous shallow water model and for compressible Navier- Stokes models. J. Maths. Pures et Appliqu ́ees, 86, 4, 362–368 (2006).

[34] B. Ribba, O. Saut, T. Colin, D. Bresch, E. Grenier, J.P. Boissel. A multiscale mathematical model of avascular tumor growth to investi- gate the therapeutic benefit of anti-invasive agents. J. Theoret. Biol. 243 (2006), no. 4, 532–541.

[35] D. Bresch, B. Desjardins. On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids. J. Math. Pures Appl. (9) 87 (2007), no. 1, 57–90. Extension de : D. Bresch, B. Desjardins. Stabilité de solutions faibles pour les équations de Navier-Stokes compressibles avec conductivité de chaleur. C.R. Acad. Sciences Paris, Section Mathématiques, vol. 343, Issue 3, 219– 224, (2006).

[36] D. Bresch, B. Desjardins, D. Gérard-Varet. On compressible Navier-Stokes equations with density dependent viscosities in bounded domains. J. Math. Pures Appl. (9) 87 (2007), no. 2, 227–235.

[37] D. Bresch, E.H. Essoufi, M. Sy. Effect of density dependent viscosities on multiphasic incompressible fluid models. J. Math. Fluid Mech. 9 (2007), no. 3, 377–397. Extension de : D. Bresch, E.H. Essoufi, M. Sy. De nouveaux systèmes de type Kazhikhov-Smagulov : modèles de propagation de polluants et de combustion à faible nombre de Mach, C. R. Acad. Sci. Paris, 335, Série I, (2002), 973–978.

[38] D. Bresch, B. Desjardins, E. Grenier. Crossing of eigenvalues: measure type estimates. J. Differential Equations 241 (2007), no. 2, 207–224.

[39] D. Bresch, P. Noble. Mathematical Justification of a Shallow Water Model. Methods and Applications of Analysis, 87–118, (2007).

[40] D. Bresch, B. Desjardins, M. Gisclon, R. Sart. Some instability results on the compressible Korteweg model, Ann. Univ. Ferrara, Volume 54, Number 1, 11–36,(2008).

[41] D. Bresch, B. Desjardins, E. Grenier. Measures on double or resonant eigenvalues for linear Schrodinger operator. J. Funct. Anal. 254, No5, 1269–1281, (2008).

[42] E. Fernandez-Nieto, D. Bresch, J. Monnier. Well-balanced HLLC solvers for non-homogeneous shallow-water equations with consistent intermediate wave speed. C. R. Math., 346 (13–14), 795–800, (2008).

[43] E.D. Fernandez-Nieto, F. Bouchut, D. Bresch, M.J. Castro- Diaz, A. Mangeney. A new Savage–Hutter type model for submarine avalanches and generated tsunami. J. Comp. Phys., 227, 16, 7720–7754, (2008).

[44] F. Billy, O. Saut, H. Morre-Trouilhet, T. Colin, D. Bresch, B. Ribba, E. Grenier, J.P. Flandrois. Modèle mathématique multi-échelle de l’angiogense tumorale et application à l’analyse de l’efficacité de traitements anti-angiogéniques. Bull Cancer 95(NS): 65, (2008).

[45] D. Bresch, B. Desjardins, J.–M. Ghidaglia, E. Grenier. On global weak solutions to a generic two-fluid model. Arch. Rational Mech. Anal. Volume 196, Number 2, 599-629, (2009).

[46] B. Bouffandeau, D. Bresch, B. Desjardins, E. Grenier. Exis- tence of compactly supported solutions for a degenerate nonlinear parabolic equation with nonlipschitz source term. Methods Appl. Anal. volume 16, Number 1 (2009), 45–54.

[47] D. Bresch, T. Colin, E. Grenier, B. Ribba, O. Saut. A viscoelastic model for avascular tumor growth. DCDS, 101 – 108, (2009).

[48] F. Billy, B. Ribba, O. Saut, H. Morre-Trouilhet, T. Colin, D. Bresch, JP. Boissel, E. Grenier, JP. Flandrois. A pharmacologically based multiscale mathematical model of angiogenesis and its use in investigating the efficacy of a new cancer treatment strategy. J Theor Biol,260(4), (2009), 545–562.

[49] E. Grenier, D. Bresch, M.–A. Dronne, M. Hommel, J.–P. Boissel. A phenomenological model of the growth of the necrotic area in ischemie stroke, Math. & Computer Modeling (2010), vol. 51, no9-10, 1011–1025.

[50] D. Bresch, V. Milisic. High order multi-scale wall laws, part I : the periodic case. Quarterly Applied Math., Vol. LXVIII, No. 2. (June 2010), pp. 229-253. Extension de : D. Bresch, V. Milisic. Vers des lois de parois multi-échelles implicites. Towards implicit multi-scale wall laws. C. R. Math. Acad. Sci. Paris 346 (2008), no. 15–16.

[51] D. Bresch, T. Colin, E. Grenier, B. Ribba, O. Saut. Computational Modeling of avascular tumor growth: the avascular stage. SIAM Journal of Scientific Computing 32 (4), 2321–2344, (2010).

[52] D. Bresch, C. Choquet, L. Chupin, Th. Colin, M. Gisclon. Roughness-induced effect at main order on the Reynolds approximation. SIAM Multiscale Model. Simul., (2010), vol. 8(3), 997–1017.

[53] D. Bresch, G. Métivier. Anelastic limits for euler type systems. Appl. Math Res Express, 2, 119–141, (2010).

[54] R. Klein, U. Achatz, D. Bresch, O.M. Knio, P.K. Smolarkiewicz. Regime of validity of sound-proof atmosphere flow models. J. Atmos. Sci., 67, 3226–3237, (2010).

[55] D. Dutykh, C. Acary-Robert, D. Bresch. Mathematical modeling of powder-snow avalanche flows. Studies Applied Maths, 1–29, (2011).

[56] D. Bresch, M. Renardy. Well-posedness of two-layer shallow water flow between two horizontal rigid plates. Nonlinearity 24, 1081–1088, (2011).

[57] D. Bresch, X. Huang. A Multi-Fluid Compressible System as the Limit of Weak-Solutions of the Isentropic Compressible Navier-Stokes Equa- tions. Arch. Rational Mech. Analysis 201 (2), 647–680, (2011).

[68] D. Bresch, P. Noble. Mathematical derivation of viscous shallow-water equations with zero surface tension. Indiana Univ. Journal, vol. 60, Number 4, 1137–1269 (2011).

[59] D. Bresch, B. Desjardins, E. Grenier. Singular ordinary differential equations homogeneous of degree 0 near a codimension 2 set. Proc. Amer. Math. Soc. 140, 1697–1704, (2012).

[60] D. Bresch, X. Huang, J. Li. A global weak solution to a one- dimensional non-conservative viscous two-phase system. Comm. Math. Phys., Volume 309, Issue 3, 737–755, (2012).

[61] D. Bresch, M. Renardy. Kelvin-Helmholtz instability with a free surface. ZAMP. Volume 64, Issue 4, 905–915, (2013).

[62] R.H. Khonsari, J. Olivier J, P. Vigneaux, S. Sanchez, P. Tafforeau, P.E. Ahlberg, F. Di Rocco F, D. Bresch, A. Ohazama, P.T. Sharpe, V. Calvez. A mathematical model for mechano-transduction at the early steps of suture formation. Proceedings of the Royal Society of London. Series B. (2013), 280 (1759).

[63] D. Bresch, G. Narbona-Reina. Two Shallow-Water Type Models for Viscoelastic Flows from Kinetic Theory for Polymers Solutions. ESAIM: M2AN 47, 06, 1627–1655, (2013).

[64] A. Abbaszadeh, D. Bresch, B. Desjardins, E. Grenier. Asymp- totic Production Behavior in Waterflooded Oil Reservoirs: Decline Curves on a Simplified Model. European J. Fluid Mech Math 43, 131–134, (2014).

[65] D. Bresch, C. Prange. Newtonian limit for weakly viscoelastic fluid flows. SIAM J. Math. Anal., 46, no. 2, 1116–1159 (2014).

[66] D. Bresch, C. Perrin, E. Zatorska. Singular limit of Navier-Stokes system leading to a free/congested zones two-phase model. C.R. Acad. Sciences, Math ́ematiques Series I – Mathematics, 352: 685-690 (2014).

[67] D. Bresch, M. Hillairet. Note on the derivation of multicomponent flow systems. Proc. AMS, 143, 3429–2443, (2015).

[68] D. Bresch, V. Giovangigli, E. Zatorska Two-velocity hydrodynamics in Fluid Mechanics, Part I: Well Posedness for Zero Mach Number Systems. J. Math. Pures Appl. Volume 104, Issue 4, 762–800 (2015).

[69] D. Bresch, B. Desjardins, E. Zatorska Two-velocity hydrodynamics in Fluid Mechanics, Part II. Existence of global κ-entropy solutions to compressible Navier-Stokes system with degenerate viscosities. J. Math. Pures Appl. Volume 104, Issue 4, 801–836 (2015).

[70] D. Bresch, F. Couderc, P. Noble, J.–P. Vila A generalization of the quantum Bohm identity: Hyperbolic CFL condition for Euler–Korteweg equations. C.R. Acad. Sciences Paris Volume 354, Issue 1, 39–43, (2016).

[71] D. Bresch, P. Noble, J.–P. Vila Relative Entropy for Compressible Navier-Stokes Equations with Density Dependent Viscosities and Appli- cations. C.R. Acad. Sciences Paris Volume 354, Issue 1, 45–49 (2016).

[72] D. Bresch, P.–E. Jabin. Global weak solutions of PDEs for compressible media: A compactness criterion to cover new physical situations. Springer INdAM-series, sp ́ecial issue dedicated to G. sc Métivier, Eds F. Colombini, D. Del Santo, D. Lannes, 33–54, (2017).

[73] D. Bresch, M. Renardy. Development of Congestion in Compressible Flow with Singular Pressure Asymptotic Analysis 103, 95–101, (2017).

[74] P. Sollich, J. Olivier, D. Bresch. Aging and linear response in the Hébraud-Lequeux model for amorphous rheology. Phys Rev A, 50(16) (2017).

[75] D. Bresch, P. Noble, J.–P. Vila. Relative entropy for compressible Navier-Stokes equations with density dependent viscosities and applications. ESAIM Proc and surveys, vol. 58, 40-57 (2017).

[76] D. Bresch, P.–E. Jabin. Global Existence of Weak Soutions for Com- presssible Navier-Stokes Equations: Thermodynamical unstable pressure and anisotropy viscous stress tensor. Annals of Maths, 577–684, 188, (2018).

[77] D. Bresch, P.–E. Jabin. Quantitative regularity estimates for advective equation with anelastic degenerate constraint. Proceedings of the International Congress of Mathematicians (ICM Brazil 2018). This is an original article which has not been published elsewhere.

[78] D. Bresch, M. Colin, K. Msheik, P. Noble, X. Song. BD Entropy and Bernis-Friedman Entropy C.R. Acad Sciences Paris, Mathématiques volume 357, Issue 1, 1-6 (2019).
[79] D. Bresch, M. Hillairet. A compressible multifluid system with

new physical relaxation terms. Annales ENS volume 52, 255–295 (2019).

[80] D. Bresch, P.B. Mucha, E. Zatorska. Finite-Energy solutions for compressible two-fluids Stokes system. Arch. Rational Mech. Anal. Volume 232, Issue 2, 987–1029, (2019).

[81] D. Bresch, M. Gisclon, I. Lacroix-Violet. On Navier-Stokes- Korteweg and Euler-Korteweg systems: Application to quantum fluids models. Arch. Rational Mech. Anal. volume 233, Issue 3, 975–1025, (2019).

[82] D. Bresch, S. Necasova, C. Perrin. Compression Effects in Heterogeneous Media. Journal de l’Ecole Polytechnique Mathématiques Tome 6, 433–467, (2019).

[83] D. Bresch, P.–E. Jabin, Z. Wang. Modulated Free Energy and Mean
Field Limit. Séminaire Laurent Schwartz, EDP et Applications, année 2019-
2020, Exposé no II, 22 p. https://slsedp.centre-mersenne.org/volume/SLSEDP_2019-2020__/   This is an original article which has not been published elsewhere. This article concerning repulsive kernels has to be coupled with the submitted paper [93] concerning attractive kernels to cover all the announced results in the note aux CRAS:  D. Bresch, P.–E. Jabin, Z. Wang On Mean Field Limit and Quantitative Estimates with a Large Class of Singular Kernels: Application to the Patlak-Keller-Segel Model C.R. Acad. Sciences Paris, Section Mathématiques, Volume 357, Issue 9, 708-720, (2019).

[84] D. Bresch, G. Métivier, D. Lannes. Waves interacting with a partially immersed obstacle in the Boussinesq regime. Analysis PDE , Issue 14, 1085–1124 (2021).

[85] D. Bresch, C. Burtea. Global Existence of Weak Solutions for the Anisotropic Compressible Stokes System. Annales Institut Henri Poincaré C, Analyse non linéaire, 37, 6, 1271–1297 (2020). Paper dedicated to the memory of Geneviève Raugel.

[86] D. Bresch, C. Burtea. Weak solutions for the stationary anisotropic and nonlocal compressible Navier-Stokes system.  J. Math Pures Appl., 146, 183–217 (2021).

[87] D. Bresch, N. Cellier, F. Couderc, M. Gisclon, P. Noble, G.–L. Richard, C. Ruyer-Quil, J.–P. Vila. Augmented Skew-Symetric System for Shallow-Water System with Surface Tension Allowing Large Gradient of Density.  J. Comp. Phys, 419, 109670 (2020).

[88] D. Bresch, A. Vasseur, C. Yu. Global Existence of Entropy-Weak Solutions to the Compressible Navier-Stokes Equations with Non-Linear Density Dependent Viscosities. To appear in J. Eur. Math. Soc. (2021).

[89] D. Bresch, P.–E. Jabin, F. Wang. The global existence of weak solutions for compressible Navier-Stokes equations with locally Lipschitz pressure depending on time and space variable. Nonlinearity 34(6), 4115-4162 (2021).

Submitted papers:

[90] T. Alazard, D. Bresch. Functional inequalities and strong Lyapunov functionals for free surface flows in fluid dynamics. Submitted (2020).

[91] D. Bresch, M. Gisclon, I. Lacroix-Violet, A. Vasseur. On the Exponential decay for Compressible Navier-Stokes-Korteweg equations with a Drag Term. Submitted (2020).

[92] D. Bresch, P.–E. Jabin, Z. Wang. Mean field limit and quantitative estimates with singular attractive kernels. Submitted (2020).

[93] D. Bresch, C. Burtea, F. Lagoutière. Physical relaxation terms for compressible two-phase systems. Submitted (2020). Paper dedicated to the memory of Andro Mikelic.

CO-EDITIONS: 

[1] Coéditeur avec E. Blayo et Li TaTsien d’un numéro spécial dans Ann. Math. Blaise Pascal (Volume 9, No2, 2002).

[2] Coéditeur avec T. Colin, M. Ghil et S. Wang d’un numéro spécial dans DCDS-Série A (Volume 11, 2004).

[3] Coéditeur avec B. Dimartino et F. Flori d’un numéro spécial dans Mathematical and Computer Modelling (2008).

[4] Coéditeur avec V. Calvez, E. Grenier et P. Vigneaux d’un numéro spécial dans ESAIM: Proc. Volume 30, August 2010. CEMRACS 2009: Mathematical Modelling in Medicine.

[5] Coéditeur avec P. Zhang d’un numéro spécial dans Science China Mathematics, Vol. 55, No. 2, (2012).

[6] Coéditeur avec Z.P. Xin d’un numéro spécial dans Methods Appl. Anal., Vol. 20, No. 2, (2013). Publication des interventions de 40 minutes de la session ”Etats de la Recherche” SMF: ”Topics on compressible Navier–Stokes equations”, (2012).

HANDBOOKS and ARTICLES in SPECIAL EDITIONS: 

[1] D. Bresch. Shallow-water equations and related topics. Handbook of Dif- ferential Equations, Evolutionary equations, vol. 5, Edited by C.M. Dafer- mos and M. Pokorny ́, (2009), 1–102.

[2] E. Bonnetier, D. Bresch, V. Milisic. A priori convergence esti- mates for a rough Poisson-Dirichlet problem with natural vertical boundary conditions. Advances in Matematical Fluid Mecanics, Dedicated to Giovanni Paolo Galdi on the Occasion of his 60th Birthday (2009) A. Sequeira and R. Rannacher Editors, p.105-134.$

[3] D. Bresch, B. Desjardins, E. Grenier. Oscillatory limit with chang- ing eigenvalues: A formal study, p. 91–105. New Directions in Mathematical Fluid Mechanics. The Alexander V. Kazhikhov Memorial Volume. Series: Advances in Mathematical Fluid Mechanics. Fursikov, Andrei V.; Galdi, Giovanni P.; Pukhnachev, Vladislav V. (Eds.) (2010).

[4] D. Bresch, I. Ionescu, E. Fernandez-Nieto, P. Vigneaux. Aug- mented Lagrangian Method and Compressible Visco-Plastic Flows : Appli- cations to Shallow Dense Avalanches. p. 57–89. New Directions in Mathe- matical Fluid Mechanics The Alexander V. Kazhikhov Memorial Volume. Series: Advances in Mathematical Fluid Mechanics. Fursikov, Andrei V.; Galdi, Giovanni P.; Pukhnachev, Vladislav V. (Eds.) (2010).

[5] Co-auteur, avec R. Danchin, B. Desjardins, A. Novtony, M. Perepetlisa, d’un ouvrage dans Panoramas et synth`eses sur les fluides compressibles faisant suite aux cours de la session ” Etats de la Recherche” SMF: Topics on compressible Navier–Stokes equations, (2012) organized in Chambéry.

[6] D. Bresch, B. Desjardins. Weak solutions with density dependent viscosities. Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, Eds Y. Giga et A. Novotny (2017), Springer.

[7] D. Bresch, B. Desjardins, J.–M. Ghidaglia, E. Grenier, M. Hillairet. Multi-fluid Models Including Compressible Fluids. Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, Eds Y. Giga et A. Novotny (2017), Springer.

[8] D. Bresch, P.–E. Jabin. Quantitative regularity estimates for com- pressible transport equations New Trends and Results in Mathematical De- scription of Fluid Flows. Necas Center Series, 77–113. Eds M. Bulicek, E. Feireisl, M. Pokorny. Springer Nature Switzerland AG (2018).

[9] D. Bresch, P.–E. Jabin. Viscous compressible flows under pressure. Fluid under pressure, 105-148. Eds T. Bodnar, G.P. Galdi, S. Necasova. Birkhauser (2019).

PROSPECTIVE DOCUMENTS AND SYNTHESIS:

With E. Neveu (scientific and administrative support):

[1] Synthèse de l’Atelier de Réflexion Prospective ANR (ARP) MathsInTerre,  2014 (16 pages).

[2] Document de restitution des travaux de l’Atelier de Réflexion Prospective ANR (ARP) MathsInTerre, 2014 (200 pages).

With the CNRS national committee section 41:

[3] Rapport de conjoncture 2019

With a groupe of members of LAMA UMR5127 CNRS:

[4] Charte éco-responsable du laboratoire.

%d blogueurs aiment cette page :